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AbstractÐDiscrete Walsh transform is an orthogonal transform often used in spectral methods for different applications in signal

processing and logic design. FFT-like algorithms make it possible to efficiently calculate the discrete Walsh spectrum. However, for

their exponential complexity, these algorithms are practically unsuitable for large functions. For this reason, a Binary Decision Diagram

(BDD) based recursive method for Walsh spectrum calculation has been introduced in [4]. A disadvantage of this algorithm is that the

resulting Multi-Terminal Binary Decision Diagram (MTBDD) representing the Walsh spectrum for f can be large for some functions.

Another disadvantage turns out if particular Walsh coefficients are to be computed separately. The algorithm always calculates the

entire spectrum and, therefore, it is rather inefficient for applications where a subset of Walsh spectral coefficients, i.e., the pruned

Walsh spectrum, is required. In this paper, we propose another BDD-based method for Walsh spectrum calculation adapted for

application where the pruned Walsh spectrum is needed. The method takes advantage of the property that, for most switching

functions, the size of a BDD for f is usually quite a bit smaller than the size of the MTBDD for the Walsh spectrum. In our method, a

MTBDD representing the Walsh spectrum is not constructed. Instead, two additional fields are assigned to each node in the BDD for

the processed function f. These fields are used to store the results of intermediate calculations. Pairs of spectral coefficients are

calculated and stored in the fields assigned to the root node. Therefore, the calculation complexity of the proposed algorithm is

proportional to the size of the BDD for f whose spectrum is calculated. Experimental results demonstrate the efficiency of the

approach.

Index TermsÐLogic synthesis, spectral techniques, Walsh, pruned spectrum, BDD.
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1 INTRODUCTION

SPECTRAL methods have been widely used in many
applications for a long time. For example, the use of

spectral methods in circuit design dates back to the early
1960s (see, e.g., [2]). The Walsh and the Reed-Muller
transform are the two discrete transforms most often used
in logic design.

After the highest activity in the area in the 1970s (see,

e.g., [17], [18], [20]), there is apparently a renewed interest

in spectral methods for logic design, started in [36], which

can be easily traced in several papers in journals and

presented at conferences and some rather specialized

meetings [12], [24].
The main limiting factor for application of spectral

methods in processing of switching functions is their

calculation complexity in spite of the existence of fast

FFT-like algorithms [18], [20]. For example, the time and

space complexities of FFT-like algorithms are O�n2n� and

O�2n�, respectively, for switching functions of n variables.
However, this problem is considerably overcome by the

invention of a Binary Decision Diagram (BDD)-based

method [3] for efficient calculation of Walsh transform [4].

The method was extended to calculation of various other

spectral transforms (see, e.g., [4], [5], [11], [23], [27], [30]).

As is shown in [26], these methods perform FFT-like
operations over DDs, instead of over vectors, from whence
originates their advantages and possibility to process large
functions. These methods exploit the recursive structure of
the related transform matrices to generate a recursive
calculation procedure. The related algorithms start from
the DD representing a given function and, as a result,
produce DD representing the corresponding spectrum. Two
bottlenecks of these recursive algorithms, relevant for the
considerations in this paper, can be mentioned:

1. For many functions, the produced DDs representing
the spectrum are large.

2. It is impossible to calculate a particular spectral
coefficient or a subset of coefficients separately
without calculating the complete spectrum.

This can be considered an important disadvantage since
there are many spectral methods in logic design for which
only the values of a few selected coefficients are needed.
Examples of such applications are spectral techniques for
fault detection [7], [16], [19] and logic synthesis [6], [15],
[21], [22], [24], [25], [31], [34], [35]. In particular, we want to
note some recent techniques for nontautology checking of
the equivalence of switching functions by spectral coeffi-
cients [33]. In several such applications, the pruned Walsh
spectrum is required [10], [24].

In this paper, we are attempting to overcome the
mentioned disadvantages of DD-based methods for the
case of calculation of the Walsh spectrum of switching
functions. Present DD methods for calculation of Walsh
transform, as, for example, those in [6], [13], [21], are
recursive in the sense that the main calculation procedure
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calls itself recursively at each node to perform calculations
level by level over the DD. Intermediate results of the
calculations are stored as MTBDDs of subspectra for f . The
output of such procedures is the MTBDD representing the
Walsh spectrum Sf for f . We propose a new bottom-up
nonrecursive method for calculation of Walsh coefficients of
switching functions. This method takes advantage of the
property that, for the great majority of switching functions,
the BDD for the function is of much smaller size than the
MTBDD for its spectrum since the Walsh spectrum of a
switching function is an integer-valued function with a
considerable number of different values. A greater number
of terminal nodes increases the number of nonterminal
nodes since, for each different value of terminal nodes,
some branching of edges, thus, some nonterminal nodes,
are required. For this reason, we do not generate an
MTBDD for the Walsh spectrum. Instead, all the calcula-
tions are performed over the BDD for f . In each node, only
one addition and subtraction is performed. The intermedi-
ate results are stored into pairs of fields assigned to each
nonterminal node.

In [13], the calculation of a single Walsh coefficient, or a
subset of Walsh coefficients, is based on a straightforward
definition of spectral coefficients as an inner product of a
given function f with the basic functions in terms of which
a transform is defined. In this way, for a given f and the
specified w, the required Walsh coefficient Sf�w� is
calculated as the inner product of the Walsh function of
index w and f . The corresponding Walsh function is stored
as a separate MTBDD which is then multiplied by the
MTBDD for f by using the method given in [6] for
multiplying a matrix or a vector with a given vector, both
represented by DDs. In this way, the method exploits a
property that calculation of a subset of k Walsh
coefficients may be interpreted as a windowing operation
over the Walsh matrix with a �k� 2n� window of size k
in the multiplication of the Walsh matrix and the truth-
vector for f .

As noted above, in [13], the Walsh functions used in the
calculation of the required subset of coefficients are stored
by separate DDs that are necessarily simpler than MTBDDs
for the complete Walsh matrix. That makes the algorithm
applicable to large functions where the other methods can
not be applied. If this method is used to extract all
coefficients, it becomes identical to the method proposed
in [6].

In this paper, since we are calculating the pairs of
coefficients, we can say we are using a 2� 2n window.
However, unlike [13], besides the basic definition of Walsh
coefficients as inner products, we additionally exploited the
periodicity in Walsh functions. Due to that, we split the
window into a set of �2� 2� windows and distributed them
over the MTBDT for the Walsh transform by simulta-
neously matching the recurrence in both Walsh matrices
due to their Kronecker product representable structure and,
in a decision tree, due to the recursive application of the
decomposition rules. It should be noted that both recursive
structures originate in the decomposition of the domain
group of order 2n into the direct product of cyclic
subgroups of order 2. Due to the restriction to �2� 2�

subwindows, the related calculations match the basic Walsh
transform matrix W�1� and we just have to take into
account the periodic change of the sign in the Kronecker
product of W�1� by itself corresponding to ÿ1 in W�1�.

A transformation over a transform matrix, which is then
multiplied by a vector, can be expressed through a
corresponding transformation over the vector by keeping
the transform matrix unchanged. Due to that, we transfer
the �2� 2� windowing operation over the MTBDD for the
Walsh matrix into the corresponding operation over the
MTBDD for a given f . In this way, we are able to calculate a
pair of Walsh coefficients by assigning two fields to nodes
in MTBDD for f .

In this respect, the method presented in this paper is an
extension of the method in [27], where the windowing
procedure is replaced by multiplication with a delta
function ��0; x�, x 2 f0; . . . ; 2i ÿ 1g, where i is the number
of the level in the MTBDD.

Savings in the method proposed in this paper, compared
to the method in [13], are that we do not need to store an
MTBDD for a Walsh function and the MTBDD for f at the
same time. Further, the calculations are simplified since
they are reduced to the calculations over the corresponding
pairs of function values at each node in the MTBDD for f .
Experimental results clearly show the advantage of our
method over the method given in [13].

We calculate selected Walsh coefficients by processing
different nodes in the BDD for f . The pair of calculated
coefficients is stored in two fields assigned to the root node.
Complexity of the algorithm to calculate a pair of Walsh
coefficients is proportional to the size of the BDD for f .
Therefore, the algorithm is suitable for calculation of the
pruned Walsh spectrum. It is possible to calculate the set of
Walsh coefficients by our method for each switching
function whose MTBDD is possible to build.

2 BASIC DEFINITIONS

2.1 Walsh Transform

Denote by C�Cn
2 � the space of functions f : Cn

2 ! C, where
C2 � �f0; 1�g;��, � denotes addition modulo 2, and C is
the complex field. The set of discrete Walsh functions of
order n is a complete orthogonal basis in C�Cn

2 �.
Definition 1. The Walsh functions of order n are defined by

wal�k; j� � �ÿ1�
Pn

i�1
kiji ;

where k; j 2 f0; . . . ; 2n ÿ 1g and

k �
Xnÿ1

l�0

kl � 2l; j �
Xnÿ1

l�0

jl � 2l:

In applications, the Walsh functions are used in different
orderings [9], [18]. However, different orderings of Walsh
functions produce the same set of Walsh coefficients. Most
of the calculation procedures are using the so-called natural
ordering since Walsh functions thus ordered express some
symmetry properties which can be efficiently used to reduce
the space and time requirements for the related calculations
[2], [18], [31]. If the Walsh spectra in different orderings are
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required, they are determined by reindexing the Walsh

coefficients in the natural ordering. The natural ordering of

Walsh functions is useful in matrix representations of

Walsh transform and is compatible with the recursive

structure of decision trees. Therefore, in this paper, we

consider only the naturally ordered Walsh functions.

Definition 2. The system of naturally ordered Walsh functions is

conveniently represented by the Walsh transform matrix given

by

W�n� �
On
i�1

W�1�; W�1� � 1 1
1 ÿ1

� �
;

where
N

denotes the Kronecker product.

Definition 3. For an n variable function f , the Walsh transform

and the inverse Walsh transform are defined by

Sf�w� � 2ÿn
X2nÿ1

x�0

f�x�wal�w; x�;

f�x� �
X2nÿ1

w�0

Sf�w�wal�w; x�:

In matrix notation, the Walsh transform pair is given as

Sf � 2ÿnW�n�F;
F �W�n�Sf ;

where Sf � �Sf�0�; . . . ; Sf�2n ÿ 1��T is the vector of Walsh

transform coefficients, and F � �f�0�; . . . ; f�2n ÿ 1��T is the

vector representing values for f . When f is a switching

function, then F is the truth-vector for f .

Example 1. For a four variable switching function

f�x1; x2; x3; x4� given by the truth-vector

F � �1; 1; 0; 1; 0; 1; 1; 1; 1; 0; 0; 1; 1; 1; 0; 0�T ;
the Walsh spectrum is given by the vector

Sf � �10;ÿ2; 2; 2; 0; 0; 0; 4; 2;ÿ2;ÿ2;ÿ2; 0; 0; 4; 0�T :

Definition 4. The pruned Walsh spectrum is defined as a subset

of 2k, k � nÿ 1, coefficients.

2.2 Data Structure for the Algorithm

In the previous section, mathematical definitions are

formulated in terms of transform matrices to represent

operators and vectors to represent a given function and its

spectrum. However, in practical implementations, both

matrices and vectors are represented by decision diagrams

which are used as the data structure to perform all the

manipulations and calculations.
The Walsh spectrum is an integer-valued function and

can be represented by a Multi-Terminal Binary Decision

Diagram (MTBDD) [1], [6], derived by the reduction of the

corresponding Multi-Terminal Binary Decision Tree

(MTBDT). It should be noted that switching functions are

a subset of integer valued functions if logic values 0 and 1

are interpreted as integers 0 and 1. With this interpretation

of terminal nodes, BDDs become MTBDDs. Since, in

calculations of the Walsh spectrum, we perform integer

operations over DDs, in this paper, we assume that both

switching functions and their integer-valued Walsh spectra

are represented by MTBDDs, denoted by MTBDD�f� and

MTBDD�Sf�.
Unlike existing DD-based methods, the algorithm for

implementation of the proposed method does not produce a

MTBDD�Sf�. Instead, we assign to each node in the

MTBDD�f� two fields denoted as plus and minus fields.

These fields are used to store the results of intermediate

calculations. In this way, the algorithm efficiently exploits

the property that, for a great majority of switching

functions, size�MTBDD�f�� << size�MTBDD�Sf��, where

the size of a MTBDD is defined as the number of nodes in

the MTBDD.
In an MTBDT�f�, a level consists of nodes to which the

same variable in f�x1; . . . ; xn� is assigned. We assume that

levels in an MTBDT are denoted by indices of the variables

assigned. Thus, levels are denoted by 1 to n, where n is the

number of variables, with the root node at the level denoted

by 1. The same convention applies to MTBDDs.

Example 2. Fig. 1 shows MTBDT�f� for f in Example 1 and

Fig. 2 shows MTBDT�Sf�.
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3 RECURSIVE BDD-BASED METHOD FOR WALSH

SPECTRUM

A BDD-based method for Walsh spectrum calculation has
been proposed in [4]. This method is a recursive performing
of operations defined by W�1� over subgraphs in the BDD
for f and has a structure similar to the Apply procedure
given in [3]. The result of this procedure is an MTBDD
whose terminals are the Walsh spectral coefficients.
Besides the above-mentioned disadvantages of methods
for calculation of spectral transforms through DDs, we
want to point out that complexity of calculations for the
method in [4] depends on the size of the BDD as well as
on the distribution of nodes over the levels in the BDD.
For two functions whose BDDs have equal size, the run
times for calculation of the Walsh spectrum can be quite
different. In attempting to overcome or reduce some of
these disadvantages, we reorganized the calculation of the
Walsh coefficients by splitting the spectrum into pairs of
coefficients.

4 CALCULATION OF PAIRS OF WALSH

COEFFICIENTS

In this section, we present a method for calculation of pairs
of Walsh coefficients. For simplicity of explanation, we first
present the method for calculation through MTBDTs.
However, in practice, calculations are performed through
MTBDDs, which ensures efficiency. Then, we show
modifications required in calculations through MTBDDs.

4.1 Calculation through MTBDTs

In the MTBDT for a given f , we assign to each node v two
fields denoted by plusf(v) and minusf(v). The values of these
fields are calculated as follows:

Assume that we want to calculate a pair of Walsh
coefficients Wd and Wd�2nÿ1 , d 2 f0; . . . ; 2nÿ1 ÿ 1g. We
determine the binary equivalent d � �d1; . . . ; dn� through
the relation d �Pnÿ2

i�0 2ixi, di 2 f0; 1g. Then, we introduce a
parameter vector P by deleting the first bit in the binary
representation for d. Thus, P � �d2; . . . ; dn�. The jth element
of P determines the way of calculation of fields plusf�v� and
minusf�v� assigned to the nodes at the level j in the
MTBDD(f) as follows:

1. If v is a terminal node showing the constant c, then

plusf�v� � minusf�v� � c: �1�

2. If v is a nonterminal node with the successors v:low
and v:high, then

plusf�v� � plusf�v:low� � plusf�v:high�;
minusf�v� � plusf�v:low� ÿ plusf�v:high�; �2�

for pj � 0, and

plusf�v� � minusf�v:low� �minusf�v:high�;
minusf�v� � minusf�v:low� ÿminusf�v:high�; �3�

for pj � 1.

Clearly, if j � n and the outgoing edges of a node v

point to the constant nodes showing the values cq and
cq�1, q 2 f0; . . . ; 2n ÿ 1g, then plusf�v� � cq � cq�1 and
minusf�v� � cq ÿ cq�1.

Fig. 3 illustrates the application of (1), (2), and (3).
A procedure CalcWalsh for the calculation of the pair of

Walsh coefficients Wd;Wd�2�nÿ1� can be formulated as
follows:

Procedure(CalcWalsh)

1. Express the decimal index d of the required
Walsh coefficient Wd by a binary sequence
d � �d1; d2; . . . ; dn�, where n is the number of
variables.

2. Generate a parameter vector P as

P � �d2; d3; . . . ; dn�:

3. Traverse MTBDT�f� level by level starting from
level n. Calculate the values of fields plusf and
minusf for all nonterminal nodes as specified by (1),
(2), and (3).

4. The pair of Walsh coefficients �Wd;Wd�2�nÿ1� � in the
natural ordering is determined as

Wd � plusf�root�;
Wd�2�nÿ1� � minusf�root�;

where root is the root node in the MTBDT�f�.
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Example 3. Fig. 4 shows the calculation of the pair of Walsh

coefficients W3 and W11 for an arbitrary four variable

function f . Since d � �0011� for W3 and d � �1011� for

W11, for both coefficients P � �011�, which shows that

they can be calculated simultaneously. In Fig. 4, for each

node v, the values of fields plusf�v� and minusf�v� are

shown on the left and the right side of the node,

respectively. If the procedure explained in Fig. 4 is

applied to f in Example 1, then we get W3 � 2 and

W11 � ÿ2.

4.2 Calculation through MTBDDs

In practice, the calculations are always performed over

MTBDDs and the advantages are taken from the compact-

ness of the MTBDDs compared to MTBDTs.

In MTBDDs, there are edges connecting nodes at

nonadjacent levels. A crossing of an edge to a level is

denoted as the cross point [29]. The cross points should be

considered in each calculation procedure through MTBDDs

to take into account, in a proper manner, the impact of the

deleted nodes [26], [29]. For this reason, calculation rules (1)

and (2) should be changed. The required modifications can

be determined from the following considerations:

Fig. 5a shows a node v at the ith level, with the low

successor node u at the level i� k. Assume that the values
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of fields assigned to the node u are plusf�u� � a and

minusf�u� � b.
We assign a cross node to each point where a level

crosses the edge between v and u. In Fig. 5b, cross points are

shown by dotted circles. Each cross point corresponds to a

deleted node whose both edges point to the same node.
From (1) and (2), for a given value of k and a given

parameter vector P , we first calculate plusf 0�v:low� and

minusf 0�v:low� in the following way:
If k � 2,

plusf 0�v:low� � 2a;
minusf 0�v:low� � 0;

k � 2; pi�1 � 0;

plusf 0�v:low� � 2b;
minusf 0�v:low� � 0;

k � 2; pi�1 � 1;

Similarly, if k � 3,

plusf 0�v:low� � 4a;
minusf 0�v:low� � 0;

k � 3; pi�1 � 0; pi�2 � 0;

plusf 0�v:low� � 4b;
minusf 0�v:low� � 0;

k � 3; pi�1 � 0; pi�2 � 1;

plusf 0�v:low� � 0;
minusf 0�v:low� � 0;

k � 3; pi�1 � 1:

In the general case, for a node v at the level level�v� in

MTBDD�f� with level�root� � 1, the values for the plusf

and the minusf fields assigned to v are calculated as

plusf�v� � plusf 0�v:low�
�plusf 0�v:high�; plevel�v� � 0;

minusf�v� � plusf 0�v:low�
ÿplusf 0�v:high�; plevel�v� � 0;

plusf�v� � minusf 0�v:low�
�minusf 0�v:high�; plevel�v� � 1;

minusf�v� � minusf 0�v:low�
ÿminusf 0�v:high�; plevel�v� � 1;

�4�

where

plusf 0�v:low� �
2level�v:low�ÿlevel�v�ÿ1plusf�v:low�; pl�0;level�v�<l�level�v:low�;
2level�v:low�ÿlevel�v�ÿ1minusf�v:low�; plevel�v:low��1;

pl�0;level�v�<l<level�v:low�;
0; otherwise;

8>>><>>>:
minusf 0�v:low� �
minusf�v:low�; level�v:low� ÿ level�v� � 1;

0; otherwise;

�
plusf 0�v:high� �

2level�v:high�ÿlevel�v�ÿ1plusf�v:high�; pl�0;level�v�<l�level�v:high�;
2level�v:high�ÿlevel�v�ÿ1minusf�v:high�; plevel�v:high��1;

pl�0;level�v�<l<level�v:high�;
0; otherwise;

8>>><>>>:
minusf 0�v:high� �
minusf�v:high�; level�v:high� ÿ level�v� � 1;

0; otherwise:

�
Fig. 6 and Fig. 7 illustrate determination of values for

fields plusf 0 and minusf 0 for k � 2 and k � 3.

Example 4. Consider an integer function f�x1; x2; x3; x4�
given by the MTBDD shown in Fig. 8a. For the

Walsh coefficients W6 and W14, the binary representa-

tions of decimal indices are d � �0110� and d � �1110�,
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respectively. Thus, the parameter vector P is P � �110�.
Fig. 8b shows the values of fields plusf and minusf

calculated by using the procedure CalcWalsh. The

recursive method [4] applied to the function f as the

result gives an MTBDD�Sf� representing the complete
Walsh spectrum (Fig. 8c). It is obvious from Fig. 8 that
MTBDD�Sf� is much larger than MTBDD�f�.

5 CALCULATION OF THE PRUNED WALSH

SPECTRUM

We calculate the pruned Walsh spectrum with r coefficients
by running the CalcWalsh procedure a few times for
different values of elements of the parameter vector P .
The choice between the fields plusf or minusf of the
successors which will be used in calculation of a Walsh
coefficient depends on the index of the spectral coefficients
which is going to be calculated. Thus, in some situations, for
calculation of new coefficients, processing of all the nodes in
the MTBDD(f) is not needed. Instead, only nodes on some
levels are processed. That choice also depends on the
indices of the calculated coefficients. The following example
explains this method.

Example 5. Let f be an n variable integer function

represented by an MTBDD. We want to calculate the

following Walsh coefficients W�0;0;i3;...;in�, W�0;1;i3;...;in�,
W�1;0;i3;...;in�, W�1;1;i3;...;in�. In the first step, all the nodes in

the MTBDD are processed, resulting in coefficients

W�0;0;i3;...;in� and W�1;0;i3;...;in�. In the second step, only the

root node is processed (minus fields of successors are

used), resulting in two other required coefficients.

5.1 Complexity of Calculation

The previous example shows that the order of calculation is
important in the cases when a set of spectral coefficients is
calculated. The best order of calculation is the lexicographic
bit-reverse order. The calculation starts from the coefficient
with the lowest index and the coefficients are calculated in
the increasing order of indices.

The number of operations used in the proposed algo-
rithm is obviously proportional to the size of the
MTBDD�f�. If only one or two coefficients are calculated,
in each node only one addition and one subtraction is
performed.
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The number of operations for calculation of the complete
spectrum can be determined as follows:

Let f be represented by an MTBDT and the coefficients
are calculated in the lexicographic bit-reverse order as
explained above. The nodes at the last nonterminal level
(level n for an n variable function) are processed once, but
the nodes at the level nÿ 1 are processed twice. First, the
calculations are performed over the values plusf of
successors and then the minusf values. Similarly, the nodes
at the level nÿ 2 are processed four times, etc. Thus, the
total number of additions and subtractions performed,
OMTBDT , to calculate the Walsh spectrum of an n variable
function represented by the MTBDT, is given by

OMTBDT � 2 � �1 � 2nÿ1 � 2 � 2nÿ2 � . . .� 2nÿ1 � 1� � n � 2n:
Obviously, in calculations through MTBDTs, the number

of performed operations is equal to the number of
operations in a FFT-like algorithm for the Walsh transform.

If f is given by a MTBDD, the number of performed
operations OMTBDD is given by

OMTBDD �
Xn
i�1

2nÿi �NoNodesAtLevel�i�; �5�

where NoNodesAtLevel�i� is the number of nodes at the
level i. Since the size of a MTBDD is always smaller than the
size of the corresponding MTBDT, the efficiency of our
method is obvious. The number of operations to calculate a
set of Walsh coefficients depends on the function (i.e., on
the size of its MTBDD) and on the indices of the required
coefficients. For a given MTBDD�f�, that number for each
pair of coefficients can be calculated by using (5).

6 EXPERIMENTAL RESULTS

The proposed method is suitable for the calculation of a
subset of Walsh coefficients. The following experimental

results show the advantage of our method over the
recursive method if only a subset of the Walsh coefficients
is calculated. We have developed a programming package
in C++ which performs both the recursive algorithm in [4]
and the algorithm proposed in this paper. This integration
of both algorithms in the same environment allows direct
comparisons of these algorithms in calculation of a set of
Walsh coefficients and the entire spectrum. The experi-
ments were carried out on a SUN Sparc 4 with 128 MByte of
main memory and all calculation times are given in CPU
seconds.

For all experiments, we assume that the BDD for the
benchmark function is already constructed. For the variable
ordering of the BDDs, we used the initial variable ordering,
i.e., as it occurs in the benchmark description. Using more
advanced BDD minimization techniques, like dynamic
variable ordering, will allow us to apply the method to
larger functions. But, since this is not the objective of this
paper, only benchmarks are considered for which the BDD
construction directly worked.

6.1 Space Complexity

The output of the recursive algorithm in [4] is the
MTBDD�Sf�. The algorithm proposed in this paper stores
the results of the calculation at fields assigned to the nodes
in the MTBDD�f�. Therefore, an overall estimate of the
memory needed by both approaches can be obtained by
comparing the sizes of MTBDD�Sf� and MTBDD�f�.

Table 1 shows the sizes of MTBDD�f� and MTBDD�Sf�
as well as their ratios for some benchmark functions. As can
be seen in the last column, for all benchmarks considered,
the MTBDD�f� is much smaller than the MTBDD�Sf�. The
ratio between the sizes illustrates a saving of memory
achieved by the proposed algorithm. In some cases, the
sizes differ by a factor of 30 (see, e.g., in5). For larger
functions, MTBDD�Sf� often cannot be constructed at all,
while the MTBDD for f can be easily built. This clearly
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Fig. 8. (a) MTBDD(f), (b) Calculation of W6 and W14, (c) MTBDD�Sf �.



demonstrates the efficiency of our approach with respect to
the memory consumption.

6.2 Time Complexity

In Table 2, we give the execution times to calculate the
Walsh spectrum by the recursive method (column recur.)
and to calculate the first 64, 256, and 1,024 coefficients and
the entire spectrum by our method (columns denoted by 64,
256, 1,024, and entire, respectively). As can be seen easily,
our method is more efficient if only a part of the Walsh
spectrum is calculated. If the entire spectrum is calculated,
the recursive method is faster. For large functions, like e64,
the calculation of the entire spectrum is impossible within a
reasonable time by using our method. It is interesting that,
for functions with a smaller number of variables (less than

20) as well as smaller number of outputs (less than 25), our

method is faster than the recursive method even for the

calculation of the entire spectrum (apex4, ex1010, alu4,

misex3, add6, planet). But, our technique also allows us to

compute (at least) some coefficients in the cases where the

recursive approach fails.
Table 3 compares the time requirements for the method

in [13] (column ISCAS'94-method ) and the method we are

proposing (column Pruned-Walsh-method) for computing the

first-order coefficients for the set of benchmark functions

used in [13]. The machine used in [13] is a SUN Sparc 2,

while we performed the experiments on a PC Pentium/133.

CPU times are given in seconds. It may be seen that our

method is much faster than the method given in [13]. That is

not surprising since the method given in [13] is based on the

matrix by vector multiplication method proposed in [6]. The

difference from [6] is that no whole Walsh matrix is used.

The authors of [13] exploit the property that each Walsh

coefficient for a given f is defined as the inner product of

the corresponding Walsh function and f . Thus, instead of

calculating with the complete Walsh matrix as in [6], they

organized the calculation of a subset of Walsh coefficients

by using the corresponding subset of Walsh functions in

terms of which the required coefficients are defined.
In [13], for each Walsh function, the corresponding BDD

is generated and multiplied by the BDD for f . Obviously,

that is a quite a bit more time consuming procedure than

the method proposed in this paper.
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Experimental Results: Memory

TABLE 2
Expermental Results: Runtime

TABLE 3
Experimental Results for Large Functions: Runtime



7 CLOSING REMARKS

In many applications, the complete spectrum of a discrete

transform is not required. Instead, only a small set of

spectral coefficients is sufficient. This paper proposes a

method for efficient calculation of pairs of Walsh spectral

coefficients through MTBDDs. To calculate 2k Walsh

coefficients for a given f , we process the MTBDD�f� 2kÿ1

times. However, we do not always process all the

nonterminal nodes. Depending on the index of the Walsh

coefficients calculated, the processing of some nonterminal

nodes is avoided in some steps of the algorithm.
The method does not generate the MTBDD for the Walsh

spectrum. Instead, the results of intermediate calculations,

as well as the pair of calculated coefficients, are stored in

two fields assigned to each nonterminal node. Therefore,

the complexity of the related algorithm is proportional to

the size of the MTBDD for the processed function f .

7.1 Extensions

7.1.1 Memory Reduction

If we want to further reduce the storage requirements,

instead of two additional fields plusf and minusf , one

additional file can be used. In this case, a minor modifica-

tion of the procedure CalcWalsh leads to a procedure for

calculation of a single Walsh coefficient. However, in this

case, the time complexity of the algorithm increases.

7.1.2 Calculation of Other Transforms

By simple modifications, our method can be used to

calculate spectral coefficients for other discrete transforms

whose transform matrices have the Kronecker product

structure [5], [8]. Modifications are made depending on

the basic transform matrix and the used operations. The

following example shows the modifications of the

proposed method for calculation of the pruned Reed-

Muller spectrum.

Example 6. The Reed-Muller transform is defined by the

Reed-Muller transform matrix

R�n� �
On
i�1

R�1�;

where the basic Reed-Muller transform matrix is given as

R�1� � 1 0
1 1

� �
;

the entries of which are the logic values 0 and 1.

In calculation of the Walsh transform, (4) describes

performing operations determined by W�1� at each node

and the cross point of MTBDD�f�. In calculation of the

Reed-Muller spectral coefficients, we should perform

operations determined by R�1�. In this case, all the

calculations are performed modulo 2. Therefore, in this

case, relations corresponding to (4) have a form

plusf�v� �
plusf 0�v:low�; plevel�v� � 0;

minusf�v� �
plusf 0�v:low� � plusf 0�v:high�; plevel�v� � 0;

plusf�v� �
minusf 0�v:low�; plevel�v� � 1;

minusf�v� �
minusf 0�v:low� �minusf 0�v:high�; plevel�v� � 1;

�6�

where

plusf 0�v:low� �
plusf�v:low�; pl � 0; level�v� < l � level�v:low�;
minusf�v:low�; plevel�v:low� � 1;

pl � 0; level�v� < l < level�v:low�;
0; otherwise;

8>>><>>>:
minusf 0�v:low� �
minusf�v:low�; level�v:low� ÿ level�v� � 1;

0; otherwise;

�
plusf 0�v:high�;�
plusf�v:high�; pl � 0; level�v� < l � level�v:high�;
minusf�v:high�; plevel�v:high� � 1;

pl � 0; level�v� < l < level�v:high�;
0; otherwise;

8>>><>>>:
minusf 0�v:high� �
minusf�v:high�; level�v:high� ÿ level�v� � 1;

0; otherwise;

�
and � denotes sum mod 2 operation.

A further extension of the proposed method can be made
to calculate spectral transforms for multiple-valued func-
tions, as, for example, Galois field transform [14] or the
Reed-Muller-Fourier transform [28]. The method can be also
used to calculate the discrete transform spectra optimized
by choosing different polarities for variables. In this case,
the Multi-valued DDs (MDDs) [32] are assumed as the
underlying data structure to represent the processed
functions and their spectra.

The approach proposed in this paper for the pruned
Walsh spectrum can be further extended to the efficient
calculation of pruned spectra of discrete transforms on
different finite groups which can be represented as a direct
product of some subgroups of smaller orders and whose
transform matrices have the Kronecker product structure.
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