BACKGROUND

Motivation

- Goal of QC thus far has been to solve problems faster than classical computing
- Deutsch’s algorithm first example of algorithm with faster quantum algorithm
- Our goal is to obtain exponential memory improvement for a specific problem
 - We use sequential circuits to achieve this
Sequential Circuits

- Sequential circuits contain a combinational portion and a memory portion.
- Combinational portion is re-used and therefore usually simpler.
- Sequential circuits are modeled by finite automata.

Finite Automata

- 5-tuple $\{ Q, \Sigma, \delta, q_0, Q_{ac} \}$
- Q = set of states
- Σ = input alphabet
- q_0 = starting state
- Q_{ac} = set of accepting states
- δ = transition function $\delta : Q \times \Sigma \rightarrow Q$.

More Finite Automata

- The memory portion stores state info.
- An FSA for a counter that counts to 4:

Quantum Finite Automata

- RFA: Reversible finite automata i.e. only one arrow going into each state.
- A QFA is a reversible finite automata that transitions between quantum states.
- Q = the vector space of state vectors.
- Q_{ac} = the accepting subspace with an operator P_{ac} that projects onto it.
- δ is a unitary matrix.
Example

- RFA for 2-counter (can do it in 2 states)
- RFA’s cannot recognize $E=\{a^j | j=2k+3\}$

PREVIOUS WORK

Prime Counter

- For p prime let language $L_p = \{a^j : p | j\}$
- Any deterministic FA recognizing L_p takes at least p states
- Ambainis and Freivalds [1] show that a QFA needs only $O(\log p)$ states
- $O(\log p)$ states requires only $O(\log \log p)$ qubits. This is an exponential decrease

QFA for L_p

- Set of states: $Q = \{|0\rangle, |1\rangle\}$
- Starting state: $q_0 = |0\rangle$
- Set of accepting states: $Q_{acc} = span(|0\rangle)$
- Next state function δ:

$$
\begin{bmatrix}
\cos(\phi) & i\sin(\phi) \\
 i\sin(\phi) & \cos(\phi)
\end{bmatrix}
$$
Counter QFA

- Pick a rotation angle $\Phi = \frac{2\pi k}{p}$, $0 < k < p$
- For input a^j, rotate qubit j times by Φ
- If j is a multiple of p then the state is definitely $|0\rangle$, else we have $|1\rangle$ with probability $\cos^2(\Phi)$
- Want to pick a set of k’s that increases the probability of obtaining state $|1\rangle$ for every j

1-qubit Counter for $p=5$

The values for k can be picked such that the probability of error is always less than $\frac{7}{8}$

Sequence of QFAs

- This QFA rejects any x not in L_p with varying probability of error ranging from 0 to 1
- Therefore any one of these QFAs is not enough
- We can pick a sequence of $8 \ln p$ QFA’S with different values for k where $\Phi = \frac{2\pi k}{p}$
- The values for k can be picked such that the probability of error is always less than $\frac{7}{8}$

Proof Sketch

- At least half of all of the k’s that we consider reject any given a^j not in L_p with probability at least $\frac{1}{2}$
- There is a sequence of length $8 \ln p$ that $\frac{1}{4}$ of all elements reject every a^j not in L_p with probability $\frac{1}{2}$ (This follows from Chernoff Bounds)
Problems To Address

- No explicit circuit construction given
- No explicit description of the sequence of angle parameters given
- Loose error estimate

Quantum Circuits

- Quantum operators are unitary matrices
- A larger matrix is broken into a matrix or tensor product of 2x2 matrices (1-qubit gates)
- Gate library: \{Rx, Ry, Rz, C-NOT, NOT\}
- \(R_x(\phi) = \begin{bmatrix} \cos(\phi) & i\sin(\phi) \\ i\sin(\phi) & \cos(\phi) \end{bmatrix} \)
- \(R_y(\phi) = \begin{bmatrix} \cos(\phi) & -\sin(\phi) \\ \sin(\phi) & \cos(\phi) \end{bmatrix} \)
- \(R_z(\phi) = \begin{bmatrix} e^{i\phi} & 0 \\ 0 & e^{-i\phi} \end{bmatrix} \)
- NOT = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \)

Gate Library
Gate Library

\[\text{C-NOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \]

\[\text{K-controlled Rotations} \]

\[H = R_y(\frac{\pi}{4}) \]

Controlled Rotations

Barenco et. al. [2] give construction for \(k \)-controlled rotations from basic gates.

They are constructed from K-controlled NOT gates and \(1 \)-controlled rotation gates.

Implementation

- The QFAs cannot be implemented separately without wasting space.
- Need \(O(\log p) \) qubits for this.
- Can implement as a block-diagonal matrix.
- Each block on the diagonal is an \(R_x \).
- Can be implemented with controlled rotations.

Block-Diagonal Matrix

\[
\begin{bmatrix}
R_x(\frac{2\pi k_1}{p}) & 0 & 0 & 0 \\
0 & R_x(\frac{2\pi k_2}{p}) & 0 & 0 \\
0 & 0 & R_x(\frac{2\pi k_3}{p}) & 0 \\
0 & 0 & 0 & R_x(\frac{2\pi k_4}{p})
\end{bmatrix}
\]
Basic Circuit

Each block diagonal corresponds to one k-controlled rotation gate
Example:

Good Parameters

Error Probability

- The probability of error for this circuit is:
 \[P_{err} = \max_{1 \leq j < p} \frac{1}{n} \sum_{i=1}^{n} \cos \left(\frac{2\pi k_i j}{p} \right) \]
- The expression is the sum over the error contribution of each \(k_i \)
- Try to minimize the maximum error for any value of \(j < p \)

Picking parameters: Observations

- **Theorem:** No parameter set can have probability of error \(<\frac{1}{2}\)
- **Proof:**
 - For a given \(k \) the average probability of error over all \(j \)'s is \(\frac{1}{2} \)
 - A sequence of \(k \)'s has the same average probability of error
 - Therefore \(P_{err} \) which is the max of all of these has to be \(> \frac{1}{2} \)
Rejection Patterns

- Each parameter is “good” for a ½ of the \(j \)’s and they occur in a specific pattern

Greedy Selection of Parameters

- Try to cover as much new area as possible
- Continue this process until all parameters are rejected with a certain probability
- Obtain a set of parameters that follow the sequence \(ml/l \) where \(m \) and \(l \) are constants
- Use mutually prime values of \(m \) and \(l \) to avoid repetition
 - Usually \(m=2 \) and \(l=3 \)

Asymptotic Behavior

- These params give low \(P_{err} \) for all \(p \)’s

Estimating Error Bounds: Idea

- Discretize the cosine expression
- If \(\sin^2(\phi) \geq \frac{1}{2} \) regard it as \(1/2 \)
 - If \(\sin^2(\phi) < \frac{1}{2} \) regard it as 0
- The area covered by a parameter \(k \) is the portion of the unit circle where \(\sin^2 \left(\frac{2\pi k}{p} \right) \geq \frac{1}{2} \)
- For the parameters \(ml/l \) can get recursive expressions for which areas are covered by \(n \) of the \(k \)’s
- If \(n \) was half the total number of \(k \)’s, the probability lower bounded by \((1/2) \cdot (1/2) = (1/4) \)
IMPROVED CIRCUITS

Circuit Complexity
- Basic block-diagonal circuit: too many gates
- There are only $O(\log \log p)$ qubits where as there are $O(\log p)$ gates
- Different circuit decomposition may yield better results
 - Some reductions are possible

Reductions
- Order the parameters such that their controls are in Gray Code order
- Only one C-NOT is required between any set of C-NOTS

Reducing Control Bits
- Can use only $\log p$ different rotations
- We apply them with fewer control bits by using binary addition
Other Techniques

- Random circuit simulations
 - Pick a set of \(k \)-controlled circuits repeatedly
 - Save the best

<table>
<thead>
<tr>
<th>Prime</th>
<th>19</th>
<th>31</th>
<th>101</th>
<th>241</th>
<th>307</th>
<th>521</th>
<th>1021</th>
<th>10381</th>
<th>63521</th>
<th>316691</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P[{\varphi}])</td>
<td>508</td>
<td>527</td>
<td>549</td>
<td>552</td>
<td>555</td>
<td>562</td>
<td>575</td>
<td>607</td>
<td>0.24</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Table 3: Best \(P[\{\varphi\}] \) observed in 100 independent circuit simulations for each prime.

Greedy Simulation

- Pick gates one by one first go through controls then through rotations, \(p^2 \) possibilities
- Continue this while probability decreases
- Order does not matter

Diagonalization

\[
\begin{bmatrix}
R(\frac{2\phi_k}{p}) & H & H \\
H & R(\frac{2\phi_k}{p}) & H \\
H & H & R(\frac{2\phi_k}{p}) & H \\
\end{bmatrix}
\]

Using Diagonal Computations

- Diagonal computation uses identity
 \(HR(\theta)H = R(\theta) \)
- NDIAG algorithm by Bullock and Markov [4] reduces gate counts by tensor-product decomposition
- This technique may not be useful for this circuit for an inherent reason
 - the range of the parameters too big
 - Tensor product of two rotations adds the angles.
 - Need to explore this: could mean there are NO good circuits for this computation.
Tensor Products

- Diagonal unitary matrices have the form
 \[
 \begin{bmatrix}
 e^{i\alpha} & 0 \\
 0 & e^{i\beta}
 \end{bmatrix}
 \]

- Tensor products of two such matrices have the form
 \[
 \begin{bmatrix}
 e^{i\alpha_1 + i\alpha_2} & 0 \\
 0 & e^{i\beta_1 + i\beta_2}
 \end{bmatrix}
 \]

On-going Work: Proof Sketch

- We want a circuit with $O(\log \log p)$ gates and we are trying to combine them to form a computation that has $O(\log p)$ rotations.
- This is possible if we use the gates as rotations with angles that add like binary numbers.
- Problem: We want $O(\log p)$ rotations spread out in the range $[1,p]$. Using $O(\log \log p)$ rotations we can either get $[1, \log p]$ consecutive rotation angles or $[1/p]$ rotation angles with big holes in between.

Current Work

- Finding better circuits
- Finding circuits or proving that no good circuits exist for the greedy parameters
- Coming up with an analytical error bound for these parameters
- Empirically the error value is around 0.60

Conclusions

- Studied counters with exp memory savings
 - Can construct unitary computations
 - Can construct quantum circuits
Open Questions

- Are there any polynomial sized circuits or is there a size-accuracy tradeoff?
- Will Fourier transforms or other techniques give friendlier parameters?
- Do other quantum sequential circuits improve memory usage over classical circuits?

References