J. H. Reif, “Quantum Information Processing: Compression, Coding, and Related Computations”, (Online preprint in postscript http://www.cs.duke.edu/reif/paper/qsurvey.ps), Jan. 1999. (abstract, ps)
M. Tegmark and J. Wheeler: “100 Years of the Quantum,” Scientific American , Feb. 2001 (p.68-75). (abstract, ps)
NSF, “Quantum Information Science”, Report of NSF Workshop, Arlington, VA, Oct. 1999 (38 p.)
Th. Beth and M. R. Rotteler, “Quantum Algorithms: Applicable Algebra and Quantum Physics,” Springer Tracts in Modern Physics, 173, 2001, pp. 96-50. (pdf).
“Two-bit heros,” The Economist, Janurary 13th, 1996, pp. 78-79. (pdf)
A. Eckert and R. Jozsa: “Quantum Computation and Shor’s Factoring Algorithm,” Rev. Mod. Phys.68(3), 733-753 (1996).
L. Hales and S. Hallgren, “An Improved Quantum Fourier Transform Algorithm and Applications,” Proc. ACM Symposium on Foundations of Computer Science, Nov. 2000. (.ps)
S. Hallgren et. al: “Normal Subgroup Reconstruction and Quantum Computation Using Group Representations,” Proc. ACM Symposium on Theory of Computing, 2000. (abstract, .ps)
M. Grigni et. al, “Quantum mechanical algorithms for the nonabelian hidden subgroup problem,” Proc. ACM Symposium on Theory of Computing33, 2001. (abstract, .ps)
L. K. Grover: “From Schrodinger’s Equation to the Quantum Search Algorithm”, Winter Inst. on Foundations of Quantum Theory, Calcutta, Jan 2000
T. Hogg, C. Mochon, W. Polak, E. Rieffel “Tools for Quantum Algorithms“, Int.J.Mod.Phys. C10 (1999) 1347-1362, quant-ph/9811073.
V. V. Shende and I. L. Markov “On the CNOT-cost of TOFFOLI Gates,” Quantum Information and Computation, vol. 9, no. 5-6, pp. 461-486, May 2009
Other
C. P. Williams and A. G. Gray, “Automated design of quantum circuits,” QCQC 98, Lecture Notes on Compu. Sci., v. 1509, pp. 113-125, Springer-Verlag, 1999. (pdf)
T.Yabuki and H.Iba, “Genetic Algorithms for quantum circuit design: Evolving a simpler teleportation circuit,” 2000 Genetic and Evolutionary Computation Conf., Las Vegas, NV, pp. 425-430, 2000. (pdf)
Architectures and Physical Implementations
M. Steffen et al.: “Toward Quantum Computation: a Five-qubit Quantum Processor,” IEEE Micro, March-April 2001, pp. 24-34. (abstract, pdf)
G. Hachtel and F. Somenzi, “Logic Synthesis and Verification Algorithms”, 3 ed., 2000
O. Coudert: “Doing Two-Level Logic Minimization 100 Times Faster.” Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, 1995, pp.112–121. (abstract, .ps)
D. Jankovic, R. S. Stankovic and R. Drechsler: “Decision Diagram Method for Calculation of Pruned Walsh Transform”, IEEE Transactions on Computers, Vol. 50, No. 2, February 2001. (abstract, pdf)
V. Kravets: “Constructive Multi-Level Synthesis by Way of Functional Properties.” (abstract, pdf)
A. Mishchenko: “Implicit Representation of Discrete Objects”, Proc. of 3d Oregon Symposium on Logic, Design,and Learning (LDL ’00), May 22 2000, Porland, Oregon. (abstract, pdf)
A. Mishchenko: “An Introduction to Zero-suppressed Binary Decision Diagrams,” 2001. (pdf)
M. Thornton and V. S. S. Nair, “Behavioral Synthesis of Combinational Logic Using Spectral Based Heuristics,” ACM Transactions on Design Automation of Electronic Systems 4(2), 219-230 (1999). (abstract, pdf)
T. Toffoli, “Reversible Computing,” Tech. Memo MIT/LCS/TM-151, MIT Lab for Comp. Sci, 1980. (36 p.) (pdf)
M. Perkowski et al., “A General Decomposition For Reversible Logic,” Reed-Muller workshop, Aug. 2001. (18 p., pdf 1pdf 2)
K. Iwama, Y. Kambayashi, S. Yamashita, “Transformation Rules For Designing CNOT-based Quantum Circuits,” Design Autom. Conf. (DAC) 2002, pp. 419-425. (pdf)
V. Pan: “Nearly Optimal Computations With Structured Matrices,” Proc. ACM-SIAM Symposium on Discrete Algorithms11, San Francisco, CA (2000). (abstract, pdf)
S. Egner et. al: “Decomposing a Permutation into a Conjugated Tensor Product,” International Symposium on Symbolic and Algebraic Computation, 1997. (abstract, .ps)
C. C. Paige and M. Wei, “History and Generality of the CS Decomposition,” Linear Algebra and Appl.208/209, 303-326 (1994). (ps)